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Abstract

By using analytical mode shapes as the interpolating functions for both displacements and stresses on the
reference edges of a plate, a wave element is formulated for use in the boundary element method to study
Lamb wave propagation and interaction in plates, to achieve both accuracy and computational efficiency.
Lamb wave interaction with a notch is investigated using this method. The results with respect to wave
transmission, reflection and mode conversion are consistent with physical considerations of Lamb mode
shape and energy conservation. It is shown through the reflection coefficients that S0 Lamb wave is more
sensitive than A0 wave for detecting a shallow notch in a plate. These coefficients can be used to aid the
characterization of the presence of a notch and contribute to quantitative non-destructive evaluation
methodology for plate structures. Time history results are obtained by conducting Fourier transform on the
coefficients solved in frequency domain. Comparison with experiment results shows the suitability of the
method for wave propagation studies in relation to damage detection.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The use of Lamb waves for non-destructive evaluation (NDE) of plates has attracted attention
due to its interrogating efficiency over a reasonably extensive region. By sending a Lamb wave
see front matter r 2005 Elsevier Ltd. All rights reserved.
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pulse, a structural discontinuity, if exists, can be located by interpreting reflected Lamb wave
packages from the discontinuity. However, the presence of multi-mode and dispersion of Lamb
waves complicate the extraction of useful information from the measured wave signals. Significant
progress has been made by reducing the excited Lamb waves to single mode by using equipment
such as wedge transducers [1], comb transducers [2] and inter-digital transducers [3–5]. However,
most detection methods yield results that are qualitative in nature. Development of
comprehensive and good quantitative methods invariably needs a good analytical or numerical
model to study the effect of a whole spectrum of parameters which otherwise would not be
feasible experimentally. Analytical solutions are almost impossible except for simple problems,
and hence an efficient numerical program to model the complicated elastic wave interaction
problem even for a single Lamb mode is essential.
A numerical method to discretize a whole plate can be very inefficient for wave propagation

problems as the element size has to be small yet large enough to minimize numerical errors. Al-
Nassar et al. [6] combined the finite element method (FEM) to simulate the localized plate region
containing weldment and Lamb mode expansion to represent the wave field in the remaining
region of the plate. A similar procedure was used by Chang [7] and Moulin et al. [8] to study the
interaction of Lamb wave with defects and the excitation of Lamb wave by PZT patch,
respectively. In both cases, only a region of the plate containing structural discontinuities is
meshed with finite elements, while the known analytical wave propagation solution is applied on
the remaining portion of the plate. The significantly reduced computation effort made the solution
possible.
In NDE experiments to detect defects, only that portion of waves that have not been

complicated by interactions resulting from incident and multiply-reflected waves is of interest.
Hence, a numerical model to capture localized effects rather than the global behavior is adequate.
As with experiments, the wave interaction can be evaluated by measuring the amplitudes of the
reflected and transmitted Lamb modes at two selected boundaries of the plate under investigation.
Thus, only the segment of the plate within the selected boundaries needs to be modeled if Lamb
waves pulses are used, which is the case in some NDE techniques. Cho and Rose [9] developed the
hybrid boundary element method (BEM) to monitor a segment of plate by forcing the mode shape
of Lamb waves on the two reference imaginary edges to obtain the relationship between
displacement and stress for the case without wave reflections. The amplitudes of each Lamb
modes passing through the reference edges are subsequently computed. The ratio of the
amplitudes can then be compared with experimentally measured values, facilitating the
development of NDE on plates to a quantitative level [10,11]. In their model, the imaginary
edges are discretized and numerically integrated by the standard BEM procedure. The use of
higher-order interpolating function to reduce the number of elements required can be
problematic. This is because the Lamb mode shape values are forced on each discrete node of
the edges rather than through the entire length of the edge. The interpolating function and the
Lamb mode shape are not the same and the resulting actual mode shape implied in the numerical
integration is distorted. Hence, the meshes on the boundaries need to be rather fine to achieve
reasonably accurate results.
The objective of this paper is to present a wave element that allows for a coarser element to be

used in BEM to model wave propagation and interaction within a localized segment of a plate
containing a discontinuity. Conceptually, this entails using the exact mode shape function and
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integrating each of the two imaginary edges as one single element, termed herein as the wave
element. Experimental results of Lamb wave interaction in a plate with and without a notch are
used to validate the model in terms of both the reflection coefficients and time history response as
well locate the notch position as in NDE. The computational accuracy and efficiency will be
demonstrated.
2. BEM formulation for steady-state Lamb wave propagation

2.1. BEM for steady-state elasto-dynamics

Lamb waves are fundamentally plane strain waves [12]. For the 2D elasto-dynamics problem,
the basic BEM integral equation without body force is [13]
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þ
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�

u
*
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dG, (1)
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where l and k range from 1 to 2, dlk is the Kronecker delta function, r the density, Cs and Cp the
compression and shear wave velocities, respectively, r the distance between the load point (which
is used to form the set of equations to be solved, often known as the collecting point) and the field
point and n the unit normal to the surface. c and w are given by
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ior

Cs

� �
�

Cs
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w ¼ K2
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C2
p

K2
ior
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� �
(5b)

in which o is the angular frequency and K0, K1, and K2 are the modified zero-, first- and second-
order Bessel functions of the second kind, respectively.
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By discretizing the boundary G, Eq. (1) can be approximated as

ciu
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þ
X

j

Ĥ
ij
u
*j

¼
X

j

GijT
* j
, (6)

where

Ĥ
ij
¼

Z
Gj

T
* �

dGj; Gij ¼

Z
Gj

u
*�
dGj and j ¼ 1; 2; . . . ,

number of boundary elements.

The diagonal terms ði ¼ jÞ, Ĥ
ii
and Gii, pose computational difficulties due to singularities in the

Bessel functions at r ¼ 0. By expanding the Bessel functions, Gii can be expressed as a sum of a
non-singular part, fn, and a logarithmic part, A logðrÞ, which can be approximated by a

logarithmic quadrature integration scheme, while Ĥ
ii
can also be expressed as a sum of a non-

singular term, fnd , and a singular term, fs. The singular term is the same as that for the elasto-

static problem. Denoting the elasto-static equivalent terms as ðĤ
ii
Þ
s
¼ fns

þ fs, where fns is the
non-singular term, the LHS diagonal terms can be expressed as

ci þ Ĥ
ii
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ii
Þ
s
þ fnd

� fns. (7)

As in the elasto-static problem, the singular part, ci þ ðĤ
ii
Þ
s can be obtained by considering rigid-

body motion without having to perform integration [13]. Therefore, singularity is circumvented in
Eq. (7), and a steady-state elasto-dynamics problem can be solved by using Eq. (6), which can be
written in a more compact form as X

j

Hiju
*j

¼
X

j

GijT
* j
, (8)

where

Hij ¼
ci þ Ĥ

ii
; i ¼ j;

Ĥ
ij
; iaj:

8<
:

2.2. Hybrid BEM for Lamb wave propagation

For practical reasons, the domain of interest in the application of Lamb wave propa-
gation for NDE is confined to a small area. For example, in a 2D plate, the region is bounded
by two traction-free boundaries, GTop and GBot, and two imaginary edges, Gþ and G�, as shown
in Fig. 1. For a uniform segment, incident Lamb mode propagates into the domain from the
left edge, and out of the domain at the right edge without mode conversion and virtually no
decay. If some structural discontinuity (such as a notch) exists in the domain, the incident
Lamb mode partially converts into other modes, and all these modes may interact and propa-
gate out of the domain in either direction. Therefore, the acoustic field at the edges can be
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Fig. 1. 2D model of a plate segment with a notch.

J. Jin et al. / Journal of Sound and Vibration 288 (2005) 195–213 199
expressed as [11]
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where subscripts n and p refer to nth or pth Lamb mode, AI
p is the amplitude of the incident mode

p, A�
n and Aþ

n are the amplitudes of nth Lamb mode at edges G� and Gþ, respectively, k denotes

the wavenumber, and ū
*I
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* I

), ū
*�
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*�

) and ū
*þ

(or T̄
*þ

) are the displacement (or stress) mode
shape of the incident, left and right propagating waves, respectively. The Lamb mode shapes are
given as [12]
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For anti-symmetric Lamb modes:
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where m is the shear modulus, x ¼ Cp=Cs, a2 ¼ o2=C2
p � k2, b2 ¼ o2=C2

s � k2,

C ¼
2ka sinðah=2Þ

ðk2 � b2Þ sinðbh=2Þ
and D ¼

�2ka cosðah=2Þ

ðk2 � b2Þ cosðbh=2Þ
.

If each edge is discretized into l nodes and if N modes of Lamb waves are considered, Eqs. (9) and
(10) can be expressed as [9]
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*

��l�NfA
�
n e

�iknx1gN�1, (12)

fT
*

gG
�

l�1 ¼ ½T̄
*

�Il�NfA
I
pdpn e

iknx1gN�1 þ ½T̄
*

��l�NfA
�
n e

�iknx1gN�1 (13)

for the left edge, and
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for the right edge.
From Eq. (12), the amplitudes of the left propagating modes can be expressed as
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Substituting Eq. (16) into Eq. (13), the stress field at the left edge can be written in terms of the
displacement field as

fT̄
*
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Similarly, from Eqs. (14) and (15), the stress field at the right edge can be expressed as
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*

gG
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�þl�Nfu
*
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Considering a plate segment with traction-free boundaries and imaginary edges (Fig. 1), Eq. (8)
can be equivalently expressed as
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; u
*Bot

; u
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*Gþ
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where each matrix is divided into four sub-matrices according to top, bottom, left and right
boundaries, respectively, and the prime (0) denotes matrix transpose. Substituting Eqs. (17) and
(18) into Eq. (19) and moving the unknown displacement fields from the right- to the left-hand
side,
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H̄
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After solving Eq. (20), the amplitudes of the reflected and transmitted wave modes can be
obtained as

fA�
n e

�iknx1gN�1 ¼ ½ū
*�1

��N�lðfu
*
gG

�

l�1 � ½ū
*

�Il�NfA
I
pdpne
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fAþ
n e

iknx1gN�1 ¼ ½ū
*�1

�þN�lfu
*
gG

þ

l�1. (25)

Normalizing by the amplitude of the incident wave gives the reflection and transmission
coefficients.
In summary, the BEM presented by Cho and Rose [9] monitors the imaginary edge by linking

the displacement and stress field through mode expansion [14], and hence provides a convenient
way to study localized Lamb wave propagation and interaction characteristics without
considering the reflections from the actual left and right edges of the plate boundary. Both
imaginary left and right edges are discretized into small elements and the displacement and

stress relationships are imposed on each node, resulting in the terms H̄
G�

and H̄
Gþ

, thus forming
a system of algebraic equations (20). Higher-order elements can be used to compute the

terms, HG�

, GG�

HGþ

and GGþ

to achieve better accuracy and faster convergence in general
for BEM programs. However, in the BEM formulated by forcing the wave mode shapes, these
terms contain nonlinear mode shapes at each discrete node in Eqs. (21) and (22). Therefore,
Cho and Rose [9] claimed that using a higher-order element cannot provide better solution,
and all of their computations are based on linear element only. The consequence is that the
imaginary edges have to be discretized into very fine elements and computational efficiency is
therefore reduced.
2.3. Wave element in BEM for Lamb wave problems

To overcome this limitation, a wave element is proposed in this paper. Since Lamb wave mode
shapes describe very closely the exact shapes of displacements and stresses on the edges, they are
therefore almost optimal for use as interpolating function of the element. By formulating an
element that can describe almost the exact shapes, it is no longer necessary to subdivide each edge.
A single element spans the entire edge and is termed herein as the wave boundary element (WBE).
By separating the edges from other boundaries, Eq. (1) can be written as
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Z
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Z
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u
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T
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Z
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u
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T
*

dG. (26)
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Substituting Eqs. (9) and (10) into Eq. (26) and grouping terms with common unknown variables
A�

n and Aþ
n give
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By discretizing the top and bottom boundaries only, Eq. (27) can be expressed as
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þ ½Ĥ
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where

H̄
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Z
G�
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�
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*�

n Þe
�iknx1 dG, (29)

H̄
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n ¼

Z
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ð~T
�
ū
*þ

n � u
*�

T̄
*þ

n Þe
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H̄
I

p ¼

Z
G�

ð~T
�
ū
*I

p � u
*�

T̄
* I

pÞe
ikpx1 dG. (31)

The integrals in Eqs. (29)–(31) are integrated numerically without subdivision, considering both

fundamental solutions T
* �

and u
*�
, and mode shapes T̄

*

and ū
*

. The unknowns on the edges are now
the amplitudes of each mode, and the degree of freedom for each edge is only the number of
modes that are present.
If GTop and GBot are discretized into a total of L nodes, a system of 2L equations can be formed

by applying Eq. (28) at each node i in the direction x1 and x2, one at a time. The system of
equations has 2L þ 2J unknowns to be determined, where J is the number of Lamb modes
considered at each edge. Therefore, additional J nodal points are required at the edges to form 2J

equations through Eq. (28).
Examining the fundamental solutions T

* �

and u
*�
, Eqs. (29)–(31) become singular when the

collecting point lies on the wave element that is being integrated. This, however, can be overcome
by examining Eq. (28) in detail. Consider the case where the collecting point is located in edge Gþ.
The singularity occurs only in terms involving integration in the domain Gþ, namely Eq. (30).



ARTICLE IN PRESS

ΓTB

Γ ΓIncident
Wave

x2

x1

Fig. 2. Uniform plate segment.

J. Jin et al. / Journal of Sound and Vibration 288 (2005) 195–213 203
Re-grouping the terms in Eq. (28) yields

½Ĥ
Top

; Ĥ
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�½u
*Top

; u
*Bot

�0 þ
X

n

H̄
G�

n A�
n þ

X
n

ðH̄
Gþ

n þ ci ū
*i

nÞA
þ
n
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;T
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�0 � H̄
I

pAI
p. ð32Þ

It should be noted that, mathematically, H̄
Gþ

n þ ciū
*i

n depends only on Gþ and does not involve
other boundaries. This term can therefore be evaluated using a similar plate with simpler
geometry as long as Gþ remains unchanged, such as the plate in Fig. 2, where the other three
boundaries are a similar imaginary left edge G�

g and plane traction-free surfaces G
TB
g without any

structural discontinuity, in which subscript g is used to reference the fictitious plate. For Lamb
mode n propagating out of the plate from the edge G�

g with an amplitude of Aþ
n , there must be a

same Lamb mode n propagating into the segment from Gþ with amplitude Aþ
n and the wave field

on GTBg must correspond to the same Lamb mode of amplitude Aþ
n because there is no any

structural discontinuity to cause wave decay, reflection, scattering or mode conversion. Therefore,
applying Eq. (28) to the fictitious segment givesX

n

Ĥ
TB

g ū
*TB

n Aþ
n þ

X
n

H̄
G�

g

n Aþ
n

X
n

ðH̄
Gþ

n þ ciū
*i

nÞA
þ
n ¼ ½GTB

g �½0�. (33)

The variables Aþ
n can be factored out and hence the singular term can be obtained as

ðH̄
Gþ

n þ ciū
*i

nÞ ¼ �Ĥ
TB

g ū
*TB

n � H̄
G�

g

n . (34)

In summary, this method treats each imaginary edge as a WBE, thus significantly reducing the
degree of freedom associated with the edges. Since the shape functions used are exact solutions of
Lamb modes, the accuracy is predominantly controlled by the numerical integration scheme,
namely Gauss quadrature. Hence, using WBE with the proposed method to overcome the
singularity facilitates better accuracy and computational efficiency simultaneously.
2.4. Accuracy and efficiency of the proposed method

A uniform plate segment without any discontinuity (Fig. 2) is computed using both the hybrid
BEM proposed by Cho and Rose [9] and the wave element method to compare their accuracy and
computational efficiency.
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A 2mm thick and 16mm long uniform segment was used to calculate the amplitudes of Lamb
modes propagating out from the two imaginary edges when unit amplitude of one specific Lamb
mode is incident to the segment from the left edge. The actuation frequency considered is 600 kHz,
which can be employed for actual NDE on 2mm aluminum plates [4,5]. Only the lowest two
Lamb modes exist at this frequency range, namely, the fundamental anti-symmetric mode A0 with
wavelength 4mm, and symmetric mode S0 with wavelength 8.7mm. Quadratic element of length
0.4mm (distance between nodes is 0.2mm) is used to discretize the top and bottom surfaces.
Hence, the total number of nodes on both surfaces are L ¼ 2� 16=0:2 ¼ 160.
The edges when modeled using WBE need not be discretized. Since only two modes exists,

J ¼ 2, only 2 nodes from the edges together with L nodes from surfaces are used as collecting
point to form a ð2L þ 2JÞ � ð2L þ 2JÞ ¼ 324� 324 system of equation by applying Eq. (28)
2L þ 2J times. When an A0 wave of unit amplitude propagates into the segment, that is, the input
AI

p ¼ AI
A0

¼ 1 in Eq. (28), the solutions for the amplitudes of the reflected and transmitted modes
are [A�

A0
, A�

S0
, Aþ

A0
, Aþ

S0
] ¼ [0.018, 0.000, 0.985, 0.000], where the subscript is used to denote the

particular mode. It should be noted that Aþ
A0

¼ 0:985 represents 100% transmission, with 1.5%
error, A�

A0
¼ 0:018 represents 0% reflection with 1.8% error, A�

S0
¼ 0:000 and Aþ

S0
¼ 0:000 imply

the absence of S0 wave meaning that no mode conversion occurs. The results agree with the
physical fact that without structural discontinuity in the segment, the input wave mode
propagates to the right edge without any decay, reflection, or mode conversion. The displacement
fields at the surfaces of the segment are visualized in Fig. 3, with amplitudes normalized by their
maximum values, respectively. The wavelength estimated from Fig. 3a or b is approximately
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Fig. 3. Displacement field on plate surfaces; (a) solid line for bottom surface and dashed line for top surface (both lines

are coincident in (b)).
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4mm, matching the wavelength of A0. Displacement in longitudinal direction, u1 (in Fig. 3a), is
anti-symmetric, while displacement in transversal direction, u2 (in Fig. 3b), is symmetric (two lines
for top and bottom surface coincident). This produces a resultant almost circular particle motion
in the clockwise direction at the top surface and anti-clockwise direction at the bottom surface,
consistent with the motion of anti-symmetric wave mode.
The results above are obtained by treating each imaginary edge as a whole WBE. Comparison

study has been performed by discretizing each imaginary edge into 2 WBE, and three nodal points
from each edge are used as collecting points to form the equations. The over-determined system of
equations is then solved using the method of least squares. The result shows no improvement in
accuracy indicating the convergence and adequacy of using only one WBE for each edge and the
appropriateness of the mode shape function in representing the wave field distribution.
The left and right edges of the same plate are discretized into elements ranging from 10 to 80 and

solutions computed using the method of Cho and Rose [9] for comparison purpose. The convergence
with respect to the degree of discretization is plotted in Fig. 4. It is noted that the same accuracy as in
the modified method can be achieved only after at least a total of L0 ¼ 2� 80 nodes are used for two
edges. This results in a system of equation of size ð2L þ 2L0Þ � ð2L þ 2L0Þ ¼ 640� 640. Hence,
more terms need to be formulated since the matrix has ð2L þ 2L0Þ � ð2L þ 2L0Þ=½ð2L þ 2JÞ � ð2L þ

2JÞ� � 4 times the number of entries compared to that of the proposed method.
3. Modeling of Lamb wave interaction with notches

For the plate shown in Fig. 1, incident wave from one edge will propagate and then interact
with the notch, undergoing mode conversion. Hence, there will be reflected waves traveling
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towards the left edge and transmitted waves towards to the right edge. If the incident wave is
fixed, the reflection and transmission coefficients are affected by the severity of the structural
discontinuity, which in this case is the notch geometry. These coefficients measured experimentally
in NDT can be used as a quantitative means to characterize the discontinuity and confirmed by
computational means. To facilitate comparison with experimental results from the previous NDE
work [4], all the computations are performed using 600 kHz wave on 2mm aluminum plates.
A program has been written to mesh the boundaries of the plate segment including the notch.

Each linear surface of the notch is discretized into 10 quadratic elements. To analyze the
sensitivity of the Lamb waves to the size of the notch, the reflection coefficients of A0 and S0 from
the notch are computed using BEM for notch depth varying from 0.2 to 1.8mm at a fixed notch
width of 1mm. The results are shown in Fig. 5 for A0 input and Fig. 6 for S0 input. The reflection
coefficients of A0 and S0 from a notch have been studied by Lowe et al. [15] and by Lowe and
Diligent [16] by using an in-house FEM software. The results in Figs. 5a and 6b agree with their
results. The variation of reflection coefficient against notch depth has been discussed using quasi-
static assumption when the wavelength is much larger than the notch size, and using ray theory
when the wavelength is much smaller. In the practical situation, where notch size is of the same
order of the wavelength, the results vary between the values from these two theories. A simpler
interpretation of the reflection coefficient curves against notch depth can be made here based on
Figs. 5 and 6 by considering mode shape and energy conservation with respect to transmission,
reflection, and mode conversion.
The case of A0 input is first discussed based on Fig. 5. The notch depth is normalized by the

plate thickness, d̄ ¼ d=h. As shown in Fig. 5a, for d̄o0:3, the notch depth is less than 1/7 the
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Fig. 5. Coefficients against normalized notch depth for A0 input. (a) Reflected A0, (b) reflected S0, (c) transmitted A0
and (d) transmitted S0.
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wavelength of A0 (where the latter is 4mm). Hence, the wave will transmit through the notch
almost completely with negligible reflection, which agrees well with the low coefficients obtained
for both the reflected A0 and S0 wave components. If the notch spans over the full depth, then the
A0 wave is fully reflected with no conversion. The coefficient for the reflected A0 wave component
approaches 1 and that for the reflected S0 wave approaches 0. In between these two extremes, the
incident A0 wave will undergo mode conversion, partially transmitted and partially reflected
containing both A0 and S0 components. For surface cracks deeper than 1/7 wavelength, the
reflection coefficients of A0 wave may be used to characterize the presence of a notch as it
increases with notch depth. It is also not surprising that in Fig. 5b and d, the reflected and
transmitted S0 coefficient first increases and then decreases with depth, with the maximum value
occurring when the notch depth is close to half the thickness of the plate. The curve in Fig. 5c has
a slight upward tail because the mode conversion drops too rapidly as the notch depth increases
that conversion may not be complete. The unconverted energy remains in the transmitted A0
wave, resulting in a slight increase even though the notch depth increases.
The coefficients of S0 input are plotted in Fig. 6. A similar phenomenon can be observed where

mode conversion is maximum when notch depth is about half through the plate thickness (Fig. 6a
and c). Unlike A0, S0 exhibits good sensitivity even for a shallow notch. For d̄ ¼ 0:2, the notch
depth around 1/20 wavelength of S0 (where the latter is 8.7mm) and the reflection can be
distinctly observed. This could be due to its small value at the surface that any change becomes
significant. The existence of surface crack destroys the symmetry of the wave, resulting in mode
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conversion. It is shown here that the mode shape also contributes significantly to the sensitivity of
the detection. This is consistent with the observation by Ditri et al. [17] that energy distribution
inside a plate for different Lamb modes could be used to predict their detectability due to the
presence of cracks.
Similar analysis can be performed to evaluate the dependence of the coefficients on notch width,

which for concise reasons will not be discussed in detail. They agree well with the results presented
by Lowe et al. [15], and Lowe and Diligent [16]. The variation of the coefficients exhibited against
notch width is somewhat periodic and relates to the wavenumbers of the Lamb modes.
4. Time domain analysis

The proposed method is formulated in the frequency domain. The solution obtained
corresponds to the coefficients for a specific frequency in a steady-state elasto-dynamics problem.
In wave pulse generation for NDE of plates, the incident wave package is described in time
domain, denoted as f ðtÞ, and can be digitized into f ðjÞ for each discrete time instance tj, where
j ¼ 1; 2; . . . ;m. Fast Fourier transform algorithm can then be employed to perform discrete
Fourier transform to convert the temporal signals into frequency domain as F ðpÞ,

F ðpÞ ¼
Xm

j¼1

f ð jÞoðj�1Þðp�1Þ
m , (35)

where om ¼ eð�2piÞ=m is the mth root of unity and j ¼ 1; 2; . . . ;m.
For each specific frequency op, the coefficients AnðpÞ can be calculated in the frequency domain

using the method presented earlier, where n denotes Lamb mode n. By using inverse Fourier
transform, response time history for each Lamb mode is obtained as pulse packages, that is

f̄ nð jÞ ¼
1

m

Xm

p¼1

AnðpÞo�ðj�1Þðp�1Þ
m . (36)

If the incidence is narrow banded in frequency, for example, a package of double-exponential
windowed sinusoidal waves (Fig. 7a), F ðpÞ only has significant value concentrated at the vicinity
of the central frequency, while the energy distributed away from the central frequency is negligible
(see Fig. 7b). By taking only the significant value, the frequency function FðpÞ can be
reconstructed as

F 0ðpÞ ¼
F ðpÞ; absðFðpÞÞXg;

0; absðFðpÞÞog;

(
(37)

where absðÞ takes the absolute value of the variable inside the brackets, and 0ogo1 is a threshold
value to be specified to meet accuracy requirements. It is found in this study that g ¼ 0:2 is
sufficient to give fairly accurate reconstructed time history response from the approximated
frequency function (see Fig. 7c). Therefore, the calculation is performed p2 � p1 þ 1 times only to
obtain the coefficients AnðpÞ for each discrete frequency within op1 � op2 , where p1 and p2 are
obtained from absðFðpÞÞXg. The value of AnðpÞ, pop1 or p4p2, are padded with zero to construct
AnðpÞ into an array with m elements to be substituted into Eq. (36).
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Each Lamb package propagates at its group wave velocity, vn
g, which can be calculated

numerically via vn
g ¼ do=dkn, where kn is the wavenumber of Lamb mode n [12]. Without loss of

generality, assuming only the two fundamental modes A0 and S0 exist and the input is an A0
pulse, the wave package propagates from the left imaginary edge to the structural discontinuity at
group velocity vA0

g . Due to interaction with the discontinuity, a part of the incident energy reflects
as A0 wave propagating at vA0

g to the left imaginary edge, and a part of the incidence energy
converts into S0 wave, propagating at vS0

g to the left imaginary edge. The remaining energy of the
incident wave transmits through the discontinuity and propagates to the right imaginary edge
partially as A0 wave at vA0

g and partially as S0 wave at vS0
g . Therefore, for A0 incidence, there are

two packages expected at the left imaginary edge, denoted as A0–A0 and A0–S0, respectively. The
lag time for them to propagate from the left edge to the discontinuity and reflect back to the left
edge can be calculated as tA2A ¼ 2Lc=vA0

g and tA2S ¼ Lc=vA0
g þ Lc=vS0

g , respectively, where Lc is
the distance from the left imaginary edge to the discontinuity. By shifting the time response for
each mode obtained from Eq. (36) with its respective lag time and superimposing all the reflected
modes, the time history at the left imaginary edge can be constructed. Similarly, the time history at
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the right imaginary edge can be constructed as well by superimposing all the transmitted modes
shifted with their respective lag time.
5. Experiments

NDE experiments were performed for 2mm aluminum plates [4]. The numerical results using
BEM help explain some experimental results that seem at first to be incorrect. First, in detecting a
0.7mm deep notch in a 2mm aluminum plate by generating A0 wave at 600 kHz, the reflected
wave contained both A0 and S0 components as a result of mode conversion (Fig. 5b). When
detecting a 1.8mm deep notch under the same experimental condition, the reflected A0 wave was
strong but the reflected S0 wave was missing. This appears incorrect as one would expect to detect
some S0 component. The experimental result that mode conversion decreases rapidly when the
notch depth increases from half-thickness to a through crack is, however, confirmed numerically
by Fig. 5b.
Experiments were also carried out to test the sensitivity of A0 and S0 waves for a shallow notch.

A 0.5mm deep, 1mm wide notch was cut on a 600� 600� 2mm aluminum plate for this
purpose. S0 and A0 waves were generated by imposing a 5-cycle 600 kHz windowed electrical
pulse (Fig. 7a) from a function generator to a wideband circular piezoceramic actuator (8mm
diameter by 0.5mm thick), and a similar piezoceramic sensor to collect the Lamb wave signals to a
digital oscilloscope as illustrated in Fig. 8. The output signal read by the oscilloscope is shown in
Fig. 9. By using their flight time and the group velocities of S0 and A0 (S0 is faster than A0), the
collected signal packages can be identified from left to right, annotated in the figure as associated
with the excitation signal, S0 (direct incident S0 wave), A0 (direct incident A0 wave), A

0
0 (‘ringing’

signal of incident A0 wave due to circular piezoelectric patch used), S0–S0 (S0 wave reflected by
notch from incident S0 wave), S0–A0 (A0 wave mode converted and reflected by notch from
incident S0 wave), A0–S0 (S0 wave mode converted and reflected by notch from incident A0 wave),
A0–A0 (A0 wave reflected by notch from incident A0 wave) and reflection from the boundary.
The position of the sensor can be regarded as the reference left imaginary edge, and the incident

Lamb modes S0 and A0 read from the digital oscilloscope can then be extracted from Fig. 9a as
input for the numerical analysis and transformed into frequency domain using Eq. (35). The
coefficients are computed at each discrete frequency component via Eq. (37) and the time history
of each Lamb mode can then be obtained by Eq. (36). All the modes propagated to the left
imaginary edge are superimposed accounting for their respective lag time. The computational
results are given in Fig. 9b. By superimposing an expanded portion of Figs. 9a and b, and plotting
in Fig. 9c, comparison can be made between the experimental (solid line) and computational
(dotted line) results. Both the flight time and amplitudes of each package show good agreement.
It is noted that the amplitude of A0–A0 component is slightly smaller than that of S0–S0

component although the amplitude of the incident A0 wave is larger than that of the incident S0
wave. This is consistent with the earlier results of Figs. 5a and 6b, which indicates that S0 wave is
comparatively more sensitive to the shallow notch.
The presence of A0

0 component can be explained by the fact that a simple circular piezoceramic
patch is used, which cannot eliminate the ‘ringing’ phenomenon that is exhibited in the compliant
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system. This undesirable ringing effect can be eliminated by using the improved excitation
technique or actuator, such as the inter-digital transducer [4].
From numerical analysis and experimental results, quantitative NDE can be performed by

measuring the coefficients of reflection and mode conversion. In general, the reflection increases
with increase in notch depth. The depth of the notch is (i) shallow when both reflection and mode
conversion coefficients are both low (in this case, reflection coefficient is lower than 0.1 and mode
conversion coefficient is lower than 0.2), (ii) close to mid-depth when reflection coefficient is of
intermediate value (from 0.2 to 0.8 in this case) and mode conversion coefficient is relatively high
(above 0.25 in this case), and (iii) deep when the reflection coefficient is high (above 0.8 in this
case) and mode conversion is low (lower than 0.25 in this case).
As illustrated in Fig. 9, generation of both A0 and S0 modes simultaneously makes it difficult to

analyze the experimental data. Actually, the interpretation can be significantly simplified if a
single mode is generated for NDE. Wave generation techniques, such as wedge transducers [1],
comb transducers [2] and inter-digital transducers [3–5], can be employed to serve this purpose in
practical NDE applications.
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6. Conclusion

A wave element is proposed in the boundary element method for the numerical study of Lamb
wave propagation and interaction with structure discontinuity. It has the advantages of both
accuracy and computational efficiency. Lamb wave interaction with a notch is investigated by
using this method, and the results obtained are consistent with the physical consideration of Lamb
mode shape and energy conservation with respect to transmission, reflection and mode
conversion. Because of the symmetric mode shape, S0 is more sensitive to the shallow notch
than A0. By making use of the fact that the reflection increases with increase in notch depth and
mode conversion are maximized when the notch is around half through the thickness of the plate,
the reflection and conversion coefficients can be used to characterize the depth of the notch.
Numerical results obtained agree well with experimental results providing confidence to the BEM
for the study of wave propagation in plates.
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